Related Pages
ACM 11
Introduction to Matlab and Mathematica
6 units (222)

third term
Prerequisites: Ma 1 abc. CS 1 or prior programming experience recommended.
Matlab: basic syntax and development environment; debugging; help interface; basic linear algebra; visualization and graphical output; control flow; vectorization; scripts, and functions; file i/o; arrays, structures, and strings; numerical analysis (topics may include curve fitting, interpolation, differentiation, integration, optimization, solving nonlinear equations, fast Fourier transform, and ODE solvers); and advanced topics (may include writing fast code, parallelization, objectoriented features). Mathematica: basic syntax and the notebook interface, calculus and linear algebra operations, numerical and symbolic solution of algebraic and differential equations, manipulation of lists and expressions, Mathematica programming (rulebased, functional, and procedural) and debugging, plotting, and visualization. The course will also emphasize good programming habits and choosing the appropriate language/software for a given scientific task.
Instructor:
Staff
ACM 80 abc
Undergraduate Thesis
9 units

first, second, third terms
Prerequisites: instructor's permission, which should be obtained sufficiently early to allow time for planning the research.
Individual research project, carried out under the supervision of a member of the ACM faculty (or other faculty as approved by the ACM undergraduate option representative). Projects must include significant design effort. Written report required. Open only to upper class students. Not offered on a pass/fail basis.
Instructor:
Staff
ACM 81 abc
Undergraduate Projects in Applied and Computational Mathematics
Units are assigned in accordance with work accomplished

first, second, third terms
Prerequisites: Consent of supervisor is required before registering.
Supervised research or development in ACM by undergraduates. The topic must be approved by the project supervisor, and a formal final report must be presented on completion of research. Graded pass/fail.
Instructor:
Staff
ACM 95/100 ab
Introductory Methods of Applied Mathematics for the Physical Sciences
12 units (408)

second, third terms
Prerequisites: Ma 1 abc, Ma 2 or equivalents.
Complex analysis: analyticity, Laurent series, contour integration, residue calculus. Ordinary differential equations: linear initial value problems, linear boundary value problems, SturmLiouville theory, eigenfunction expansions, transform methods, Green's functions. Linear partial differential equations: heat equation, separation of variables, Laplace equation, transform methods, wave equation, method of characteristics, Green's functions.
Instructors:
Pierce, Meiron
ACM/IDS 101 ab
Methods of Applied Mathematics
12 units (444)

first, second terms
Prerequisites: Math 2/102 and ACM 95 ab or equivalent.
First term: Brief review of the elements of complex analysis and complexvariable methods. Asymptotic expansions, asymptotic evaluation of integrals (Laplace method, stationary phase, steepest descents), perturbation methods, WKB theory, boundarylayer theory, matched asymptotic expansions with firstorder and highorder matching. Method of multiple scales for oscillatory systems. Second term: Applied spectral theory, special functions, generalized eigenfunction expansions, convergence theory. Gibbs and Runge phenomena and their resolution. Chebyshev expansion and Fourier Continuation methods. Review of numerical stability theory for time evolution. Fast spectrallyaccurate PDE solvers for linear and nonlinear Partial Differential Equations in general domains. Integralequations methods for linear partial differential equation in general domains (Laplace, Helmholtz, Schroedinger, Maxwell, Stokes). Homework problems in both 101 a and 101 b include theoretical questions as well as programming implementations of the mathematical and numerical methods studied in class.
Instructor:
Bruno
ACM/IDS 104
Applied Linear Algebra
9 units (315)

first term
Prerequisites: Ma 1 abc, some familiarity with MATLAB, e.g. ACM 11 is desired.
This is an intermediate linear algebra course aimed at a diverse group of students, including junior and senior majors in applied mathematics, sciences and engineering. The focus is on applications. Matrix factorizations play a central role. Topics covered include linear systems, vector spaces and bases, inner products, norms, minimization, the Cholesky factorization, least squares approximation, data fitting, interpolation, orthogonality, the QR factorization, illconditioned systems, discrete Fourier series and the fast Fourier transform, eigenvalues and eigenvectors, the spectral theorem, optimization principles for eigenvalues, singular value decomposition, condition number, principal component analysis, the Schur decomposition, methods for computing eigenvalues, nonnegative matrices, graphs, networks, random walks, the PerronFrobenius theorem, PageRank algorithm.
Instructor:
Zuev
ACM 105
Applied Real and Functional Analysis
9 units (306)

second term
Prerequisites: Ma 2, Ma 108a, ACM/IDS 104 or equivalent.
This course is about the fundamental concepts in real and functional analysis that are vital for many topics and applications in mathematics, physics, computing and engineering. The aim of this course is to provide a working knowledge of functional analysis with an eye especially for aspects that lend themselves to applications. The course gives an overview of the interplay between different functional spaces and focuses on the following three key concepts: HahnBanach theorem, open mapping and closed graph theorem, uniform boundedness principle. Other core concepts include: normed linear spaces and behavior of linear maps, completeness, Banach spaces, Hilbert spaces, Lp spaces, duality of normed spaces and dual operators, dense subspaces and approximations, hyperplanes, compactness, weak and weak* convergence. More advanced topics include: spectral theory, compact operators, theory of distributions (generalized functions), Fourier analysis, calculus of variations, Sobolev spaces with applications to PDEs, weak solvability theory of boundary value problems.
Instructor:
Hoffmann
ACM/EE 106 ab
Introductory Methods of Computational Mathematics
12 units (309)

first, second terms
Prerequisites: Ma 1 abc, Ma 2, Ma 3, ACM 11, ACM 95/100 ab or equivalent.
The sequence covers the introductory methods in both theory and implementation of numerical linear algebra, approximation theory, ordinary differential equations, and partial differential equations. The linear algebra parts covers basic methods such as direct and iterative solution of large linear systems, including LU decomposition, splitting method (Jacobi iteration, GaussSeidel iteration); eigenvalue and vector computations including the power method, QR iteration and Lanczos iteration; nonlinear algebraic solvers. The approximation theory includes data fitting; interpolation using Fourier transform, orthogonal polynomials and splines; least square method, and numerical quadrature. The ODE parts include initial and boundary value problems. The PDE parts include finite difference and finite element for elliptic/parabolic/hyperbolic equation. Stability analysis will be covered with numerical PDE. Programming is a significant part of the course.
Instructors:
Hosseini, Hou
CMS/ACM/IDS 107
Linear Analysis with Applications
12 units (336)

first term
Prerequisites: ACM/IDS 104 or equivalent, Ma 1 b or equivalent.
Covers the basic algebraic, geometric, and topological properties of normed linear spaces, innerproduct spaces, and linear maps. Emphasis is placed both on rigorous mathematical development and on applications to control theory, data analysis and partial differential equations.
Instructor:
Stuart
ACM 109
Mathematical Modelling
9 units (306)

third term
Prerequisites: ACM 95/100 ab or equivalent.
This course gives an overview of different mathematical tools to analyze partial differential equations encountered across mathematics, biology, engineering and science. We will look at the main properties of different classes of linear and nonlinear PDEs and the behavior of their solutions using tools from functional analysis and calculus of variations with an emphasis on applications. We will discuss different types of reactiondiffusion systems, kinetic equations, advection and transport equations, the method of characteristics, gradient flows and entropy methods, conservation laws, population dynamics, parabolic equations and their spectral analysis, slowfast dynamics, relaxation, asymptotic stability, blowup and extinction of solutions, method of moments, instabilities and pattern formation, hydrodynamic scaling techniques and nondimensionalisation. We will focus on representative models from different areas which may include: LotkaVolterra equations, the FokkerPlanck equation, the Boltzmann equation, the Fisher/KPP equation, Burger's equation, movement of cells and bacterial chemotaxis (PatlackKellerSegel model), SI models from epidemiology, predatorprey systems, chemical reactions, enzymatic reactions. The list is flexible and depends on the audience. If you are interested in this course, feel free to contact the instructor with (types of) models you would like to study.
Instructor:
Hoffmann
Ec/ACM/CS 112
Bayesian Statistics
9 units (306)

second term
Prerequisites: Ma 3, ACM/EE/IDS 116 or equivalent.
This course provides an introduction to Bayesian Statistics and its applications to data analysis in various fields. Topics include: discrete models, regression models, hierarchical models, model comparison, and MCMC methods. The course combines an introduction to basic theory with a handson emphasis on learning how to use these methods in practice so that students can apply them in their own work. Previous familiarity with frequentist statistics is useful but not required.
Instructor:
Rangel
CMS/ACM/IDS 113
Mathematical Optimization
12 units (309)

first term
Prerequisites: ACM 11 and ACM 104, or instructor's permission.
This class studies mathematical optimization from the viewpoint of convexity. Topics covered include duality and representation of convex sets; linear and semidefinite programming; connections to discrete, network, and robust optimization; relaxation methods for intractable problems; as well as applications to problems arising in graphs and networks, information theory, control, signal processing, and other engineering disciplines.
Instructor:
Chandrasekaran
ACM/EE/IDS 116
Introduction to Probability Models
9 units (315)

first term
Prerequisites: Ma 3, some familiarity with MATLAB, e.g. ACM 11 is desired.
This course introduces students to the fundamental concepts, methods, and models of applied probability and stochastic processes. The course is application oriented and focuses on the development of probabilistic thinking and intuitive feel of the subject rather than on a more traditional formal approach based on measure theory. The main goal is to equip science and engineering students with necessary probabilistic tools they can use in future studies and research. Topics covered include sample spaces, events, probabilities of events, discrete and continuous random variables, expectation, variance, correlation, joint and marginal distributions, independence, moment generating functions, law of large numbers, central limit theorem, random vectors and matrices, random graphs, Gaussian vectors, branching, Poisson, and counting processes, general discrete and continuoustimed processes, auto and crosscorrelation functions, stationary processes, power spectral densities.
Instructor:
Zuev
ACM 118
Stochastic Processes and Regression
12 units (309)

second term
Prerequisites: CMS/ACM/IDS 107 or equivalent, CMS 117 or equivalent, or permission of the instructor.
Stochastic processes: Branching processes, Poisson point processes, Determinantal point processes, Dirichlet processes and Gaussian processes (including the Brownian motion). Regression: Gaussian vectors, spaces, conditioning, processes, fields and measures will be presented with an emphasis on linear regression. Kernel and variational methods in numerical approximation, signal processing and learning will also be covered through their connections with Gaussian process regression
Instructor:
Owhadi
AM/ACM 127
Calculus of Variations
9 units (306)

third term
Prerequisites: ACM 95/100.
First and second variations; EulerLagrange equation; Hamiltonian formalism; action principle; HamiltonJacobi theory; stability; local and global minima; direct methods and relaxation; isoperimetric inequality; asymptotic methods and gamma convergence; selected applications to mechanics, materials science, control theory and numerical methods. Not offered 201920.
Ma/ACM/IDS 140 ab
Probability
9 units (306)

second, third terms
Prerequisites: For 140 a, Ma 108 b is strongly recommended.
Overview of measure theory. Random walks and the Strong law of large numbers via the theory of martingales and Markov chains. Characteristic functions and the central limit theorem. Poisson process and Brownian motion. Topics in statistics.
Instructors:
Tamuz, Ouimet
Ma/ACM 142
Ordinary and Partial Differential Equations
9 units (306)

third term
Prerequisites: Ma 108; Ma 109 is desirable.
The mathematical theory of ordinary and partial differential equations, including a discussion of elliptic regularity, maximal principles, solubility of equations. The method of characteristics.
Instructor:
Isett
ACM/IDS 154
Inverse Problems and Data Assimilation
9 units (306)

first term
Prerequisites: Basic differential equations, linear algebra, probability and statistics: ACM/IDS 104, ACM/EE 106 ab, ACM/EE/IDS 116, IDS/ACM/CS 157 or equivalent.
Models in applied mathematics often have input parameters that are uncertain; observed data can be used to learn about these parameters and thereby to improve predictive capability. The purpose of the course is to describe the mathematical and algorithmic principles of this area. The topic lies at the intersection of fields including inverse problems, differential equations, machine learning and uncertainty quantification. Applications will be drawn from the physical, biological and data sciences.
Instructor:
Stuart
IDS/ACM/CS 157
Statistical Inference
9 units (324)

third term
Prerequisites: ACM/EE/IDS 116, Ma 3.
Statistical Inference is a branch of mathematical engineering that studies ways of extracting reliable information from limited data for learning, prediction, and decision making in the presence of uncertainty. This is an introductory course on statistical inference. The main goals are: develop statistical thinking and intuitive feel for the subject; introduce the most fundamental ideas, concepts, and methods of statistical inference; and explain how and why they work, and when they don't. Topics covered include summarizing data, fundamentals of survey sampling, statistical functionals, jackknife, bootstrap, methods of moments and maximum likelihood, hypothesis testing, pvalues, the Wald, Student's t, permutation, and likelihood ratio tests, multiple testing, scatterplots, simple linear regression, ordinary least squares, interval estimation, prediction, graphical residual analysis.
Instructor:
Zuev
IDS/ACM/CS 158
Fundamentals of Statistical Learning
9 units (333)

third term
Prerequisites: Ma 3 or ACM/EE/IDS 116, IDS/ACM/CS 157.
The main goal of the course is to provide an introduction to the central concepts and core methods of statistical learning, an interdisciplinary field at the intersection of statistics, machine learning, information and data sciences. The course focuses on the mathematics and statistics of methods developed for learning from data. Students will learn what methods for statistical learning exist, how and why they work (not just what tasks they solve and in what builtin functions they are implemented), and when they are expected to perform poorly. The course is oriented for upper level undergraduate students in IDS, ACM, and CS and graduate students from other disciplines who have sufficient background in probability and statistics. The course can be viewed as a statistical analog of CMS/CS/CNS/EE/IDS 155. Topics covered include supervised and unsupervised learning, regression and classification problems, linear regression, subset selection, shrinkage methods, logistic regression, linear discriminant analysis, resampling techniques, treebased methods, supportvector machines, and clustering methods.
Instructor:
Zuev
ACM/EE/IDS 170
Mathematics of Signal Processing
12 units (309)

third term
Prerequisites: ACM/IDS 104, CMS/ACM/IDS 113, and ACM/EE/IDS 116; or instructor's permission.
This course covers classical and modern approaches to problems in signal processing. Problems may include denoising, deconvolution, spectral estimation, directionofarrival estimation, array processing, independent component analysis, system identification, filter design, and transform coding. Methods rely heavily on linear algebra, convex optimization, and stochastic modeling. In particular, the class will cover techniques based on leastsquares and on sparse modeling. Throughout the course, a computational viewpoint will be emphasized. Not offered 201920.
CS/ACM 177 ab
Discrete Differential Geometry: Theory and Applications
9 units (333)

second, third terms
Working knowledge of multivariate calculus and linear algebra as well as fluency in some implementation language is expected. Subject matter covered: differential geometry of curves and surfaces, classical exterior calculus, discrete exterior calculus, sampling and reconstruction of differential forms, low dimensional algebraic and computational topology, Morse theory, Noether's theorem, HelmholtzHodge decomposition, structure preserving time integration, connections and their curvatures on complex line bundles. Applications include elastica and rods, surface parameterization, conformal surface deformations, computation of geodesics, tangent vector field design, connections, discrete thin shells, fluids, electromagnetism, and elasticity.
Instructor:
Schrœder
ACM 190
Reading and Independent Study
Units by arrangement
Graded pass/fail only.
ACM 201
Partial Differential Equations
12 units (408)

first term
Prerequisites: ACM 95/100 ab, ACM/IDS 101 ab, ACM 11 or equivalent.
This course offers an introduction to the theory of Partial Differential Equations (PDEs) commonly encountered across mathematics, engineering and science. The goal of the course is to study properties of different classes of linear and nonlinear PDEs (elliptic, parabolic and hyperbolic) and the behavior of their solutions using tools from functional analysis with an emphasis on applications. We will discuss representative models from different areas such as: heat equation, wave equation, advectionreactiondiffusion equation, conservation laws, shocks, predator prey models, Burger's equation, kinetic equations, gradient flows, transport equations, integral equations, Helmholtz and SchrÃ¶dinger equations and Stoke's flow. In this course you will use analytical tools such as Gauss's theorem, Green's functions, weak solutions, existence and uniqueness theory, Sobolev spaces, wellposedness theory, asymptotic analysis, Fredholm theory, Fourier transforms and spectral theory. More advanced topics include: Perron's method, applications to irrotational flow, elasticity, electrostatics, special solutions, vibrations, Huygens' principle, Eikonal equations, spherical means, retarded potentials, water waves, various approximations, dispersion relations, Maxwell equations, gas dynamics, Riemann problems, single and doublelayer potentials, NavierStokes equations, Reynolds number, potential flow, boundary layer theory, subsonic, supersonic and transonic flow. Not offered 201920.
ACM/IDS 204
Topics in Linear Algebra and Convexity
9 units (306)

second term
Prerequisites: ACM/IDS 104 and ACM/EE 106 a, CMS 117, or instructor's permission.
Topic varies by year. 201920: Randomized algorithms for linear algebra. This class offers an introduction to the emerging field of randomized algorithms for solving linear algebra problems. Material may include trace estimation, norm estimation, matrix approximation by sampling, random projections, approximating leastsquares problems, randomized SVD algorithms, approximate preconditioners, spectral computations, kernel methods, and fast linear system solvers. Assignments will require mathematical proofs, programming, and computer simulation.
Instructor:
Tropp
ACM/IDS 213
Topics in Optimization
9 units (306)

first term
Prerequisites: ACM/IDS 104, CMS/ACM/IDS 113.
Material varies yeartoyear. Example topics include discrete optimization, convex and computational algebraic geometry, numerical methods for largescale optimization, and convex geometry.
Instructor:
Chandrasekaran
ACM/IDS 216
Markov Chains, Discrete Stochastic Processes and Applications
9 units (306)

second term
Prerequisites: ACM/EE/IDS 116 or equivalent.
Stable laws, Markov chains, classification of states, ergodicity, von Neumann ergodic theorem, mixing rate, stationary/equilibrium distributions and convergence of Markov chains, Markov chain Monte Carlo and its applications to scientific computing, Metropolis Hastings algorithm, coupling from the past, martingale theory and discrete time martingales, rare events, law of large deviations, Chernoff bounds.
Instructor:
Owhadi
ACM/EE/IDS 217
Advanced Topics in Stochastic Analysis
9 units (306)

second term
Prerequisites: ACM/CMS/EE/IDS 117.
The topic of this course changes from year to year and is expected to cover areas such as stochastic differential equations, stochastic control, statistical estimation and adaptive filtering, empirical processes and large deviation techniques, concentration inequalities and their applications. Examples of selected topics for stochastic differential equations include continuous time Brownian motion, Ito's calculus, Girsanov theorem, stopping times, and applications of these ideas to mathematical finance and stochastic control. Not offered 201920.
Ae/ACM/ME 232 ab
Computational Fluid Dynamics
9 units (306)

first, second terms
Prerequisites: Ae/APh/CE/ME 101 abc or equivalent; ACM 100 abc or equivalent.
Development and analysis of algorithms used in the solution of fluid mechanics problems. Numerical analysis of discretization schemes for partial differential equations including interpolation, integration, spatial discretization, systems of ordinary differential equations; stability, accuracy, aliasing, Gibbs and Runge phenomena, numerical dissipation and dispersion; boundary conditions. Survey of finite difference, finite element, finite volume and spectral approximations for the numerical solution of the incompressible and compressible Euler and NavierStokes equations, including shockcapturing methods.
Instructors:
Colonius, Meiron
ACM 256
Special Topics in Applied Mathematics
9 units (306)

first term
Prerequisites: ACM/IDS 101 or equivalent.
Introduction to finite element methods. Development of the most commonly used methodcontinuous, piecewiselinear finite elements on triangles for scalar elliptic partial differential equations; practical (a posteriori) error estimation techniques and adaptive improvement; formulation of finite element methods, with a few concrete examples of important equations that are not adequately treated by continuous, piecewiselinear finite elements, together with choices of finite elements that are appropriate for those problems. Homogenization and optimal design. Topics covered include periodic homogenization, G and Hconvergence, Gammaconvergence, Gclosure problems, bounds on effective properties, and optimal composites. Not offered 201920.
ACM 257
Special Topics in Financial Mathematics
9 units (306)

third term
Prerequisites: ACM 95/100 or instructor's permission.
A basic knowledge of probability and statistics as well as transform methods for solving PDEs is assumed. This course develops some of the techniques of stochastic calculus and applies them to the theory of financial asset modeling. The mathematical concepts/tools developed will include introductions to random walks, Brownian motion, quadratic variation, and Itocalculus. Connections to PDEs will be made by FeynmanKac theorems. Concepts of riskneutral pricing and martingale representation are introduced in the pricing of options. Topics covered will be selected from standard options, exotic options, American derivative securities, termstructure models, and jump processes. Not offered 201920.
ACM 270
Advanced Topics in Applied and Computational Mathematics
Hours and units by arrangement

second, third terms
Advanced topics in applied and computational mathematics that will vary according to student and instructor interest. May be repeated for credit.
Published Date:
July 28, 2022